Mechatronics
Mechatronics is concerned with the design automation and operational performance of electromechanical systems. Mechatronics engineering is nothing new; it is simply the applications of latest techniques in precision mechanical engineering, electronic and computer control, computing systems and sensor and actuator technology to design improved products and processes.
The basic idea of Mechatronics engineering is to apply innovative controls to extract new level of performance from a mechanical device. It means using modem cost effective technology to improve product and process performance, adaptability and flexibility.
Mechatronics covers a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control. A typical Mechatronic system picks up signals processes them and generates forces and motion as an output. In effect mechanical systems are extended and integrated with sensors (to know where things are), microprocessors (to work out what to do), and controllers (to perform the required actions).
The word Mechatronics came up describing this fact of having technical systems operating mechanically with respect to some kernel functions but with more or less electronics supporting the mechanical parts decisively. Thus we can say that Mechatronics is a blending of Mechanical engineering,Electronics engineering and Computing. These three disciplines are linked together with knowledge of management, manufacturing and marketing.
Mechatronics design
Mechatronics design covers a wide variety of applications from the physical integration and miniaturization of electronic controllers with mechanical systems to the control of hydraulically powered robots in manufacturing and assembling factories.
Computer disk drives are one example of the successful application of Mechatronics engineering as they are required to provide very fast access precise positioning and robustness against various disturbances.
An intelligent window shade that opens and closes according to the amount of sun exposure is another example of a Mechatronics application.
Mechatronics engineering may be involved in the design of equipments and robots for under water or mining exploration as an alternative to using human beings where this may be dangerous.
In fact Mechatronics engineers can be found working in a range of industries and project areas including
• Design of data collection, instrumentation and computerized machine tools.
• Intelligent product design for example smart cars and automation for household transportation and industrial application.
• Design of self-diagnostic machines, which fix problems on their own.
• Medical devices such as life supporting systems, scanners and DNA sequencing automation.
• Robotics and space exploration equipments.
• Smart domestic consumer goods
•Computer peripherals.
• Security systems
Mechatronic goals
The multisensory concept
The aim was to design a new generation of multi sensory lightweight robots. The new sensor and actuator generation does not only show up a high degree of electronic and processor integration but also fully modular hardware and software structures. Analog conditioning, power supply and digital pre-processing are typical subsystems modules of this kind. The 20khz lines connecting all sensor and actuator systems in a galvanically decoupled way and high speed optical serial data bus (SERCOS) are the typical examples of multi sensory and multi actuator concept for the new generation robot envisioned.
The main sensory developments finished with these criteria have been in the last years: optically measuring force-torque-sensor for assembly operations. In a more compact form these sensory systems were integrated inside plastic hollow balls, thus generating 6-degree of freedom hand controllers (the DLR control balls).
The SPACE-MOUSE is the most recent product based on these ideas.
• stiff strain-gauge based 6 component force-torque-sensor systems.
• miniaturized triangulation based laser range finders.
• integrated inductive joint-torque-sensor for light-weight-robot.
In order to demonstrate the multi sensory design concept, these types of sensors have been integrated into the multi sensory DLR-gripper, which contains 15 sensory components and to our knowledge it is the most complex robot gripper built so far (more than 1000 miniaturized electronic and about 400 mechanical components). It has become a central element of the ROTEX space robot experiment.
No comments:
Post a Comment